The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
نویسندگان
چکیده
1. The interrelationship of metabolism of pyruvate or 3-hydroxybutyrate and glutamate transamination in rat brain mitochondria was studied. 2. If brain mitochondria are incubated in the presence of equimolar concentrations of pyruvate and glutamate and the K(+) concentration is increased from 1 to 20mm, the rate of pyruvate utilization is increased 3-fold, but the rate of production of aspartate and 2-oxoglutarate is decreased by half. 3. Brain mitochondria incubated in the presence of a fixed concentration of glutamate (0.87 or 8.7mm) but different concentrations of pyruvate (0 to 1mm) produce aspartate at rates that decrease as the pyruvate concentration is increased. At 1mm-pyruvate, the rate of aspartate production is decreased to 40% of that when zero pyruvate was present. 4. Brain mitochondria incubated in the presence of glutamate and malate alone produce 2-oxoglutarate at rates stoicheiometric with the rate of aspartate production. Both the 2-oxoglutarate and aspartate accumulate extramitochondrially. 5. Externally added 2-oxoglutarate has little inhibitory effect (K(i) approx. 31mm) on the production of aspartate from glutamate by rat brain mitochondria. 6. It is concluded that the inhibitory effect of increased C(2) flux into the tricarboxylic acid cycle on glutamate transamination is caused by competition for oxaloacetate between the transaminase and citrate synthase. 7. Evidence is provided from a reconstituted malate-aspartate (or Borst) cycle with brain mitochondria that increased C(2) flux into the tricarboxylic acid cycle from pyruvate may inhibit the reoxidation of exogenous NADH. These results are discussed in the light of the relationship between glycolysis and reoxidation of cytosolic NADH by the Borst cycle and the requirement of the brain for a continuous supply of energy.
منابع مشابه
Rat cerebral mitochondrial glutaminase activity is unaffected by moderate hyperammonemia in two models.
The phosphate-dependent (PAG) and phosphate-independent (PIndG) glutaminase activities were measured in cerebral perikaryal mitochondria derived from rats subjected to ammonium acetate- induced "simple" hyperammonemia (SHA) or thioacetamide-induced hepatic encephalopathy (HE). These two moderately hyperammonemic conditions were previously found to be accompanied by pronounced changes in virtual...
متن کاملEffects of acute hepatic encephalopathy and in vitro treatment with ammonia on glutamate oxidation in bulk-isolated astrocytes and mitochondria of the rat brain.
The metabolism of [1-14C] glutamate to 14CO2 and the glutamate dehydrogenase (GLDH) activity towards alpha-ketoglutarate (alpha-KG) formation were measured in bulk isolated astrocytes derived from control rats and rats with acute hepatic encephalopathy (HE) induced with thioacetamide. In addition, the effects of in vitro treatment of control and HE astrocytes and non-synaptic mitochondria with ...
متن کاملStoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity.
To determine the relationship between cerebral Glc metabolism and glutamatergic neuronal function, we used 13C NMR spectroscopy to measure, simultaneously, the rates of the tricarboxylic acid cycle and Gln synthesis in the rat cortex in vivo. From these measurements, we calculated the rates of oxidative Glc metabolism and glutamate-neurotransmitter cycling between neurons and astrocytes (a quan...
متن کاملEvaluation of brain mitochondrial glutamate and alpha-ketoglutarate transport under physiologic conditions.
Some models of brain energy metabolism used to interpret in vivo (13)C nuclear magnetic resonance spectroscopic data assume that intramitochondrial alpha-ketoglutarate is in rapid isotopic equilibrium with total brain glutamate, most of which is cytosolic. If so, the kinetics of changes in (13)C-glutamate can be used to predict citric acid cycle flux. For this to be a valid assumption, the brai...
متن کاملIn vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.
The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 172 1 شماره
صفحات -
تاریخ انتشار 1978